Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Gastro Hep Adv ; 1(5): 844-852, 2022.
Article in English | MEDLINE | ID: covidwho-1959542

ABSTRACT

Background and Aims: Recent evidence suggests that the gut is an additional target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, whether SARS-CoV-2 spreads via gastrointestinal secretions remains unclear. To determine the prevalence of gastrointestinal SARS-CoV-2 infection in asymptomatic subjects, we analyzed gastrointestinal biopsy and liquid samples from endoscopy patients for the presence of SARS-CoV-2. Methods: We enrolled 100 endoscopic patients without known SARS-CoV-2 infection (cohort A) and 12 patients with a previous COVID-19 diagnosis (cohort B) in a cohort study performed at a regional hospital. Gastrointestinal biopsies and fluids were screened for SARS-CoV-2 by polymerase chain reaction (PCR), immunohistochemistry, and virus isolation assay, and the stability of SARS-CoV-2 in gastrointestinal liquids in vitro was analyzed. Results: SARS-CoV-2 ribonucleic acid was detected by PCR in the colonic tissue of 1/100 patients in cohort A. In cohort B, 3 colonic liquid samples tested positive for SARS-CoV-2 by PCR and viral nucleocapsid protein was detected in the epithelium of the respective biopsy samples. However, no infectious virions were recovered from any samples. In vitro exposure of SARS-CoV-2 to colonic liquid led to a 4-log-fold reduction of infectious SARS-CoV-2 within 1 hour (P ≤ .05). Conclusion: Overall, the persistent detection of SARS-CoV-2 in endoscopy samples after resolution of COVID-19 points to the gut as a long-term reservoir for SARS-CoV-2. Since no infectious virions were recovered and SARS-CoV-2 was rapidly inactivated in the presence of colon liquids, it is unlikely that performing endoscopic procedures is associated with a significant infection risk due to undiagnosed asymptomatic or persistent gastrointestinal SARS-CoV-2 infections.

2.
Front Immunol ; 13: 918881, 2022.
Article in English | MEDLINE | ID: covidwho-1911051

ABSTRACT

Angiotensin Converting Enzyme 2 (ACE2) is the primary cell entry receptor for SARS-CoV and SARS-CoV-2 viruses. A disintegrin and metalloproteinase 17 (ADAM17) is a protease that cleaves ectodomains of transmembrane proteins, including that of ACE2 and the proinflammatory cytokine TNF-α, from cell surfaces upon cellular activation. We hypothesized that blockade of ADAM17 activity would alter COVID-19 pathogenesis. To assess this pathway, we blocked the function of ADAM17 using the monoclonal antibody MEDI3622 in the K18-hACE2 transgenic mouse model of COVID-19. Antibody-treated mice were healthier, less moribund, and had significantly lower lung pathology than saline-treated mice. However, the viral burden in the lungs of MEDI3622-treated mice was significantly increased. Thus, ADAM17 appears to have a critical anti-viral role, but also may promote inflammatory damage. Since the inflammatory cascade is ultimately the reason for adverse outcomes in COVID-19 patients, there may be a therapeutic application for the MEDI3622 antibody.


Subject(s)
ADAM17 Protein , Antibodies, Neutralizing , COVID-19 , SARS-CoV-2 , ADAM17 Protein/antagonists & inhibitors , ADAM17 Protein/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/immunology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL